壓力變送器
電容式液位計投入式液位計料位開關音叉開關精密壓力表壓力校驗儀手操器耐震電接點壓力表熱電阻熱電偶溫度計不鏽鋼耐震壓力表多點熱電偶

萊城電廠3#機組汽包水位測量偏差大原因分析

作時間:2018-05-24  來源:  作者:
   

 摘要:以華電國際萊城電廠 3# 機組差壓式汽包水位測量偏差大為例,從差壓式汽包水位測量原理入手,通過分析差壓式汽包水位測量的原理和影響因素,詳細介紹了各影響因素排查方式,確定出 3# 機組汽包水位產生偏差的真正原因,特別是差壓式汽包水位測量管路的敷設和保溫對差壓式汽包水位的影響。 這些通常不容易考慮到的影響因素,對差壓式汽包水位偏差大分析提供有價值的借鑒和參考。

 
引言
萊城電廠 300 MW 燃煤發電機組鍋爐采用上海鍋爐廠生產的型號為 SG1025-17.44-M844 亞臨界強製循環鍋爐,汽包內徑 1 778 mm ,安裝有就地牛眼玻璃水位計兩台;差壓式水位計 3 台,經過汽包壓力修正,信號經處理後,使用“三取中”邏輯進行信號優選。
 
3# 鍋爐汽包水位在運行中出現 LT0902A 與LT0902B 、 LT0903 偏差大, 在 40~70 mm 之間波動,根據 《防止電力生產重大事故的二十五項重點要
求》規定:當各水位計偏差大於 30 mm 時,應立即匯報,並查明原因予以消除 [ 1 ] 。 經過對現場設備反複排查,和數次大小修進入汽包內部測試,分析出了產生誤差的原因,並采取了相應的措施,使水位顯示恢複正常,保證了測量準確性。
 
1 萊城電廠汽包水位測量的原理
如圖 1 所示,由汽包進入凝結球的蒸汽不斷凝結成水,多餘的水會溢流到汽包內,從而保持一個恒定水位,稱其為參比段水柱,其壓力用 p + 表示。汽包內水位也形成一個壓力,用 p - 來表示。 差壓式水位計就是利用測量參比水柱產生的壓力和汽包內水柱產生的壓力差值來測量汽包水位的 [ 2 ] 。 以設計零水位 H 0 作為作為汽包水位的零刻度, 超過零刻度的為正水位( +ΔH ),低於零刻度的為負水位( -ΔH )。 根據以上原理和圖 1 所示,得到水位與差壓的關係如下:p + =p+Lρ a g ( 1 )
 
p - =p+ ( L-H 0 -ΔH ) ρ s g+ ( H 0 +ΔH ) ρ w g ( 2 )
Δp=p + -p - =L ( ρ a -ρ s ) g-H 0 ( ρ w -ρ s ) g-ΔH ( ρ w -ρ s ) g ( 3 )
式中: H 0 - 設計汽包零水位 mm ; ΔH- 汽包水位偏差正常水位的值, mm ; Δp- 對應汽包水位的差壓值, mmH 2 O ;
 ρ s - 飽和蒸汽的密度, kg/m 3 ; ρ w - 飽和水的密度, kg/m 3 ; ρ a - 參比水柱在平均水溫時的密度,kg/m 3 。
萊城電廠汽包水位測量原理示意圖
汽包正常水位 ( Normal Water Level , NWL )指的是鍋爐正常運行過程中汽包中的水位應該保持的高度,一般稱為汽包零水位。
 
上式中, L 和 H 0 都是常數; ρ s 和 ρ w 是汽壓的函數,在特定汽壓下均為定值; ρ a 除了受汽壓影響外,還和平衡容器的散熱條件與環境溫度有關,當汽壓和環境溫度不變時,其值也為定值,這時,差壓隻是汽包水位的函數。利用差壓變送器將測得的差壓信號轉變成便於遠傳的 4~20 mA DC 電信號, 送到DCS 內進行邏輯運算、 判斷, 輸出控製指令並在CRT 上顯示水位信號。
 
2 異常情況分析與處理
萊城電廠 3# 機組汽包水位裝有 3 台變送器,麵向鍋爐右側( A 側)裝一台,編號 LT0902A ,麵向鍋爐左側( B 側)裝兩台,編號 LT0902B 、 LT0903 ,運行中 B 側的 LT0902B 和 LT0903 偏差在 20 mm 以內屬於正常現象, 但是和 A 側的 LT0902A 偏差在40~70 mm 之間,偶爾還會偏差更大,經常造成自動解除,協調解除,對安全穩定生產造成較為被動局麵。 為此根據汽包水位測量的原理,進行了一係列的分析和研究,並不斷開展工作,步步逼近原因真相,成功消除了該隱患。
 
2.1 變送器排查
針對此現象,結合式( 3 )所述的汽包水位和差壓的關係, 首先懷疑右側的 LT0902A 變送器本身存在誤差, 安排專業人員對該變送器進行了校驗,但經過校驗變送器符合 0.5 級的要求,在此情況下又先後對 LT0902B 、 LT0903 進行了校驗, 兩台變送器均滿足 0.5 級的測量精度,同時對變送器進行0~16.6 MPa 耐靜壓試驗, 最大偏差為 0.030 4 mA 。誤差符合要求,因此排除變送器測量異常。
 
2.2 兩側平衡容器安裝高度一致性核定
由圖 1 看出如果由於安裝工藝出了偏差,造成左右兩側凝結球安裝高度不同,則會造成汽包兩側水位測量的“ L ”值不同,由式( 3 )可以看出就會造成汽包數位測量出現偏差。 為此,用乳膠管和玻璃杆進行組合,通過灌水,利用聯通器原理,對左右兩側的凝結球高度進行了標定,經標定發現兩側高度誤差在 5 mm 之內,符合汽包水位測量要求。
 
2.3 驗證汽包內汽水運行情況
對 A 、 B 兩側水位的零點進行標定, 兩側零點在 5 mm 之間,符合要求,從運行情況來看,兩側偏差在 10~20 mm 之間, 說明汽包內汽水運行正常,不存在“燒偏”情況。
 
2.4 對汽包水位測量回路進行實際上水傳動試驗
在機組檢修後,通過上水,將汽包凝結球灌滿水,然後將變送器進行排水、排氣、串水,確保變送器管路內充滿水,無氣泡。然後進行鍋爐放水,觀察汽包水位變化情況,發現 3 個水位變送器誤差範圍在 10 mm 內, 說明汽包水位測量係統在冷態的情況下,是完全正常的。
 
通過以上分析可以發現變送器測量精度和整個測量回路沒有較大問題,汽包水位冷態傳動試驗各項數據也正常。 但經數據分析發現,汽包水位偏差在點火後,隨著汽壓的增加,特別是汽壓在12 MPa 以後,偏差逐漸增大。 還發現,偏差在投伴熱的情況下小,停伴熱的情況下大。 說明有一個因素通過影響汽包水位測量管路而影響了汽包水位測量偏差,據此把排查的重點放在汽包水位測量管路上。
 
3 汽包水位取樣管路排查
利用伴熱改造的機會,將所有汽包水位取樣管路的保溫全部拆開,對管路進行全程檢查,沒有發現漏、滲現象,對汽包水位參比段管路進行檢查,參比段管路沒有保溫, 符合二十五項反措的要求,但是對參比段的溫度進行多點測試發現了異常情況,A 、 B 兩側溫度差距較大,具體見圖 2 、圖 3 。
A 側汽包水位和B側汽包水位
從以上溫度分布可以看出,兩側汽包水位的高壓側取樣管,都是從凝結球的溫度大於 300 ℃ 開始下降, A 側沿管路由上到下逐漸降低到 50 ℃ , B 側在降低到 60 ℃ 後,沒有繼續降低,反而不斷抬升溫度,到底部分別達到 80 ℃ 和 90 ℃ ,這種溫度梯度不符合離熱源越遠溫度越低的傳熱學規律 [ 2 ] ,這提醒我們,在下部的保溫層裏肯定有一個熱源對兩路取樣管進行了加熱,為此聯係工作人員將底部的保溫層打開,發現如圖 4 、圖 5 所示現象。
A 側汽包水位和B側汽包水位
可以看出 A 側汽包水位的高、 低壓側取樣管在圈處交接後,垂直下行,而 B 側汽包水位,高、低取樣管在圈處交接後,平行走敷設了一段距離後才垂直下行。由於汽包水位的低壓側取樣管離平衡容器還很近,溫度還很高,在交接處溫度達 120 ℃ , B側汽包水位在交接後,平行走的部分管路,高壓側管路在上,低壓側管路在下,而且管路之間非常緊密,低壓側管路相當於一個高溫熱源,不斷對高壓側管路加熱, 這就是 B 側汽包水位高壓側取樣管在降低到 60 ℃ 後,沒有繼續降低,反而不斷抬升溫度的根本原因。 而 A 側汽包水位取樣管在交接後,垂直下行,管路之間空間較大,這種管路敷設方式低壓側對高壓側的傳熱量很少,所以其溫度沒有出現“反升”現象。
 
4 汽包水位管路溫差大對測量數據影響與處理
通過以上分析, 發現了 B 側汽包水位取樣管由於管路敷設的原因,導致高壓側取樣管溫度異常升高,管路中的水溫度也必將相應升高,水的密度隨溫度的上升而降低,水的密度降低後,差壓變送器的高壓側靜壓力就會相應降低。而低壓側靜壓力不變,變送器的輸出差壓( Δp )就會降低,從式( 3 )可以看出, Δp 與 ΔH 成反比,所以隨著變送器輸出差壓的非正常降低, 汽包水位在 DCS 裏的顯示值就會非正常偏高, 這就是 A 、 B 兩側汽包水位在DCS 裏顯示偏差大的根本原因。 而通過將 B 側汽包水位水平段的保溫打開,加強通風,使高壓側取樣管的溫度降下來, 也驗證了以上分析的正確性。
圖 6 是保溫打開前後的汽包水位曆史曲線。
汽包水位曆史曲線
雖然通過保溫拆除加強通風降溫,暫時消除了汽包水位偏差,但在冬季還要考慮防凍問題,因此拆除保溫隻是臨時措施, 要從根本上解決此問題,還需要在停機的時候,對 B 側取樣管路進行改造,按照高低取樣管相互間影響最小的原則,科學設計走向,嚴格敷設工藝,才能從根本上解決此問題。
 
5 結束語
汽包水位測量,從原理上來看比較簡單,但影響因素眾多,特別是麵對複雜的現場,有很多不可預知的問題, 對水位的測量值造成或高或低的誤差,對鍋爐的安全運行、自動投入、實時監控帶來較大影響,對於類似的汽包水位的偏差問題,都可以從基本的原理入手,從安裝、補償和保溫等方麵查找問題。 希望本文的分析,能夠給大家在汽包水位測量方麵帶來一點啟發。
 
相關產品推薦:天然氣流量計
注明,ag亚游集团文章均為原創,轉載請標明本文地址

您可能感興趣的文章 Technique
相關產品 Technique
產品分類 ProductsClass

壓力變送器廠家

隔膜式單平法蘭遠傳壓力變送器

空壓機專用壓力變送器

恒壓供水壓力變送器

衛生平膜型壓力變送器

爐膛負壓變送器

羅斯蒙特3051S壓力變送器

壓阻式壓力變送器

壓力變送器殼體

HART375手操器

HART475手操器

3051TG壓力變送器

壓力控製器

衛生型隔膜壓力變送器

隔膜密封式壓力變送器

擴散矽壓力變送器

SC530A壓力變送器

SC430A壓力變送器

SC433衛生型壓力變送器

SC-BP800壓力變送器

智能壓力變送器

單法蘭壓力變送器

一體化風壓變送器

高溫壓力變送器

小巧型壓力變送器

2088擴散矽壓力變送器

負壓變送器

絕對壓力變送器

擴散矽壓力變送器

3051壓力變送器

遠傳法蘭變送器

智能變送器

差壓變送器廠家

高靜壓差壓變送器

微差壓變送器

單法蘭遠傳壓力變送器

隔膜密封式差壓變送器

智能差壓變送器

雙法蘭毛細管差壓變送器

雙法蘭差壓變送器

遠傳差壓變送器

法蘭安裝式差壓變送器

電容式差壓變送器

單法蘭凸膜片遠傳差壓變送器

雙平法蘭遠傳差壓變送器

雙法蘭高精度差壓變送器

單法蘭隔膜差壓變送器

單法蘭差壓變送器

SC3351DP智能微差壓變送器

液位變送器廠家

射頻導納料位開關

射頻導納物位計

單法蘭液位計

硫酸儲罐液位變送器

射頻導納料位開關

靜壓式液位變送器

射頻電容液位計

高溫投入式液位計

雙法蘭遠傳液位變送器

電容式液位變送器

差壓式液位計

差壓式液位變送器

雙法蘭液位計

射頻導納物位開關

射頻導納液位計

磁致伸縮液位計

單法蘭液位變送器

阻旋式料位開關

投入式液位計

法蘭式液位變送器

法蘭式液位計

電容式液位計

雙法蘭液位變送器

高溫投入式液位變送器

防腐投入式液位變送器

投入式液位變送器

音叉開關

料位開關

溫度變送器

一體化溫度變送器

一體化數顯溫度變送器

雙金屬溫度計

WSSX-411電接點雙金屬溫度計

WSS-401雙金屬溫度計

WSS-481雙金屬溫度計

WSSE-411一體化雙金屬溫度計

WSSX-481B防爆電接點雙金屬溫度計

WSSX-410B防爆雙金屬溫度計

WSSE-501一體化雙金屬溫度計

WSSE-401雙金屬溫度計一體化

指針式溫度計

熱電偶

高溫高壓熱電偶

高溫貴金屬熱電偶

熱風爐拱頂熱電偶

電站測溫專用熱電偶

鎧裝鉑銠熱電偶

隔爆熱電偶

防爆熱電偶

高溫高壓熱電偶

耐磨阻漏熱電偶

耐磨熱電偶

耐磨切斷熱電偶

裝配熱電偶

鎧裝熱電偶

鉑銠熱電偶

耐磨熱電偶

密煉機用耐磨熱電偶

低溫噴塗耐磨熱電偶

煤粉倉耐磨熱電偶

水泥廠窯爐用耐磨熱電偶

水泥廠專用耐磨熱電偶

耐磨熱電偶

熱電阻

壓力校驗儀

壓力表

數顯壓力表

精密數字壓力表

壓力變送器知識
熱門文章Technicalnews
雙金屬溫度計 智能差壓變送器 絕對壓力變送器 擴散矽壓力變送器 射頻導納開關 投入式液位變送器 雙法蘭液位變送器 一體化溫度變送器 單法蘭液位變送器
射頻導納液位計|壓力控製器 |磁翻板液位計|壓力表|隔膜壓力表|耐震壓力表| 耐磨熱電偶|天然氣流量計|壓縮空氣流量計|熱式氣體質量流量計| 氨氣流量計|
靜壓式液位計|熱電偶溫度計|電接點壓力表|精密壓力表|智能壓力校驗儀|
銷售熱線:0517-86998326 86998328 18952302362 13915186942 傳真:0517-86998327
3051TG壓力變送器 淮安市ag亚游集团有限公司 壓力變送器 液位變送器 差壓變送器 製作版權所有 / © 廠址:江蘇省淮安市金湖工業園區